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Abstract

We consider the nature of Mathematics text and how it may be approached by blind readers who (i) can read Braille (ii) cannot read Braille. We briefly describe some progress towards developing accessible mathematical resources for readers of type (i) and then concentrate on readers of type (ii). Sighted readers of complicated mathematical objects use both reading the whole object and reading subsections of the object, moving from one to the other until the object is understood. This gives us a route to rendering a large mathematical object accessible by breaking it in to several simpler parts or blocks. The blocks must be small so they may be rendered fairly simply. Several tiers of block rendering may be needed. We give some illustrative examples from fluid mechanics and the asymptotic expansion of special functions, showing that the rendering of a large object into a hierarchy of simple blocks may be something of an art form, requiring expert mathematical input. We then make some remarks on useful technology which may simplify the block rendering process for mathematicians who are not expert in arcane disciplines such as MathML.
1. Introduction

When a sighted person reads a complicated mathematical statement, they generally look at it in two ways, one as a collection of parts which all fit together and the other in terms of each individual part. A reader will often cycle several times between both modes of viewing the object before deciding they understand the object well enough to move on. Here I show two examples. 
The first example is the solution of the Fibonacci difference equation
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This has solution
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which is already getting to look rather complicated, but to read it we generally see it as two parts in the curly bracket multiplied by a factor.

The second example is the equation for the velocity v and pressure P in incompressible viscous fluid flow. There are two of these:

The equation of continuity, which says that fluid does not get created or destroyed:
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and the Navier Stokes’ equation, which is basically Newton’s second law, 
F = m a for a small part of the fluid:
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Here ( is the density of the fluid and ( is its viscosity. Notice that v is a vector, with three components in directions at right angles to one another and P is a scalar, represented by a number that varies in space and time. The other symbols hare are standard symbols about rates of change in time and space. The second equation is a vector equation with three components, so effectively we have four equations for four things and can hope to find solutions.
We can encompass the equation of continuity fairly simply: it is very short. However the second equation, with its four terms is another story: we need to look at each of the four terms, understand each one and then see them all together.
How can a blind reader approach these things? If they can read Braille, they can read a Braille version of the text and equations, and I shall discuss that extremely briefly in the next section. While there are many developments in detail needed, we think there is a sensible easy to implement automatic route from the types of equations presented here to a Braille version.

However, this is not at all useful for readers who don’t read Braille. I understand that is quite common for people who become blind after (perhaps early) childhood. For those readers we have to think of alternatives and the rest of the paper is a discussion of things we might try.

2. Rendering Mathematics into Braille

If a reader can read Braille, the first thing to do is to set the equation. Look at equation (5) above. I set it in an equation editor called MathType.  If I open the equation, copy it and then close the equation, I can then paste:
<!-- MathType@Translator@5@5@MathML1.tdl@MathML 1.0@ -->

<math displaystyle='true'>

   <semantics>

      <mrow>

         <mo>&nabla;</mo><mo>&sdot;</mo><mstyle fontweight='bold' fontstyle='normal'><mi>v</mi></mstyle><mo>=</mo><mn>0</mn>

      </mrow>

      <annotation type='MathType'>

         MathType@MTEF@5@5@+=feaafaart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgarqqtubsr4rNCHbGeaGqiVH0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaaeaabaWaaaGcbaGaey4bIeTaeyyXICTaaCODaiabg2da9iaaicdaaaa@347D@

      </annotation>

   </semantics>

</math>

<!-- MathType@End@5@5@ -->
which renders the equation in MathML, a very simple process. I may want to tidy up some of the detail which allows me to copy it back into the equation editor to edit it further. Thus, open the equation editor, paste, save and close, to get:
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which is reassuringly the same as we started with.

With a form of MathML which includes UNICODE for symbols, we now have developed a process which then uses Duxbury Braille translation to produce a Braille version.

While there is still a fair bit of development work to do, the route is clear and we may consider this a solved problem, in principle. However, even when complete, with really large complicated mathematical objects, there will still be problems, because there is not the same facility to examine parts of the equation, then the whole equation and so on as easily for a sighted reader.
3. Breaking Mathematics into Blocks: Examples

Well, we have a solution to accessibility for Braille reading blind readers. What about blind readers who cannot read Braille at all, or perhaps not very readily? 
I think we have to rethink the way we usually write mathematics, not very much, but enough to make the task of reading the bits of an equation and the whole equation more easily. If we look at the equations in section 1, the first three can be written as:

(1):  f(n+1) = f(n) + f(n-1)
(8)

for 

(2) n greater than or equal to 1

(9)

with

(3) f(0) = 1 and f(1) = 1

(10)

and a screen reader can handle that without difficulty, as long as it is switched to read character by character.

Equation (4) gets a bit messier.

Suppose we write:

A = (1+square root(5))/2

(11)

B = (1-square root(5))/2

(12)

C = 1/(square root (5))
(13)

Then

f(n)= C times ((A^(n+1) – (B^(n+1)))

(14)

This can all be managed by a screen reader. It has broken the original equation (4) into its parts, A, B and C and written the result in terms of the parts. Thus we can look at the structure of the equation (as in equation (14)), which is composed of “chunks” of mathematics and equations  (11,12,13) which define the chunks. 
While we have sorted out how we might represent equation (4) so that it might be accessible to a blind reader, we should also note that maybe we have gained an extra pedagogical profit from the exercise. 

Equation (1) is an example of
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with P = 1, Q = -1 and R = -1. The general theory of the solutions to such equations tells us that the solution is of the form
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where A and B are the two solutions of the quadratic equation
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When we solve for A and B, we find K and L by ensuring that K and L make 
f0 = 1 and f1 = 1. What this is saying is that breaking the solution into chunks, as in equations (11) – (14) reflects the mathematics behind the solution process. That may be a positive outcome of the process of rendering the solution equation accessible, for it renders the solution in a form which directly reflects the solution technique.
Let us now look at the two equations for fluid flow. They are already condensed by using bold characters for vector functions (which have three components, or parts) and using the ( symbol, which involves rates of change in three different directions. This condensation means we have a simple object for the equation of continuity and an equation with four terms for the Navier Stokes’ equation. We can write the Navier Stokes’ equation, with its four terms in the form

A + B = C + D

(18)
and define A, B, C and D either before the total equation, or after it. Which of those two possibilities we choose will depend on pedagogical imperatives. In this general context we need only be aware of both possibilities.
Let us now look at the problem of fluid flow in a pipe, a problem of crucial importance to us when we shower in the morning. The pipe is stationary, has radius a and then the fluid velocity at the inside surface of the pipe is zero
We have the basic equations of fluid flow, in equations (5) and (6). We want to look at the basic equations in cylindrical coordinates based on the axis of the pipe. The z axis is along the pipe, r is distance from the centre of the pipe and ( measures how far round the pipe a point is.The equations become much more complicated. To give you a feel for their ghastliness, they look like
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for the equation of continuity, and, wait for it,
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and
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(22)
for the Navier Stokes’ equation, in three compartmented equations.

These are undeniably difficult to comprehend, even for fully sighted readers. Before you discard this discussion as pointless because the equations are so complicated, don’t worry about the mathematics. They are not the point of the discussion. 
We can then ask how we might solve these. We guess that the fluid velocity is all parallel to the z axis, and that it depends only on r and not on time, angle or z. If we break equation (19) into three chunks, we then find that the first two chunks are zero and then that the third chunk is zero. So our guess works for equation (19).  If we look at the next two equations, the first term (A in the classification of equation (18)) is zero in each case. Also the B terms are zero and further the D terms are zero. This then tells us that the pressure is independent of r and angle. So by breaking the equations into chunks, we render them more manageable. Interestingly, this is exactly what a sighted reader must do in trying to find the solution. If we look at equation (22), the A chunk is also zero. The B chunk is also zero. We also expect the pressure to be linear with z, so the C chunk is a constant - k. The D chunk then simplifies to give
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We can then solve this equation to get a standard parabolic velocity profile across the pipe.

The point of this tale is that as we examine each of the chunks, we keep getting simple results that we can deal with, and which can be described in words fairly easily. In words we might write equation (23), (or at least the only non zero part) as

“Vz is a function of r alone and

 Derivative of (r times derivative of Vz) = constant k.”

(24)
Let us look at equation (20) in some more detail. The equations are about Vr, V(, Vz and P. According to our guessed solution, we have Vr = 0, V( = 0, Vz depends only or r and P is linear in z. Equation (20) is of the form 

A + B = C + D
(25)
where
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B = B1 + B2 + B3 + B4
(27)

where
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and

D = D1 + D2 + D3 + D4 + D5 + D6

(30)

where
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(31)
Since Vr = 0, A = 0, and also B1, B2, B3, D1, D2, D3, D4, and D6 are all zero. Since V( = 0, B4 = 0 and D5 = 0. Thus B = 0 and D = 0 and so we have
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which tells us that P is independent of r.  The other two equations may be broken down in similar ways. Notice that first we broke the vector equation into three equations, and then broke each of those into four chunks. We then broke some of these chunks into smaller chunks, so that the “chunk reduction” of the original vector equation has three tiers of chunks.
Notice that a sighted reader should never rely on memory to manipulate these equations, but always refer to some source where they have written down the equations.

Notice also that how we might break a complicated mathematical object into tiered sets of chunks requires a mathematician’s insight so that we can make structures that are easily followed (as structures) and easily worked with.

We now turn to the way we might automate setting out the chunks at the lowest level, where the real mathematics lies. We want an automatic procedure that can be followed by a blind reader, perhaps using a screen reader operating in character by character mode.
4. Possible Technology and Tools.

One tool that we might consider for preparing mathematical text is Mathematica. It is an example of a rather sophisticated mathematical manipulation package. Other packages will have similar capacities, but I will discuss Mathematica here because it is the one that I have used, though not extensively. I don’t want to bore you with the details of how Mathematica would work on the sorts of mathematical expressions that I have been describing here.
Firstly, we can enter expressions in blocks, the way we have described above. The definition of a complicated object can be broken into a tree of definitions, where we define small blocks at each level of the tree. Mathematica can then find these parts and integrate them however we direct it. We can start with the blocks  and finish with the final part or go the other way. That is, if we have

F = A + B + C + D

(33)

We can enter this with blocks first as in

H = A + B   and J = C + D

(34)

and then

F = H + J

(35)

or we can enter the synthesis of the blocks as

F = H + J

(36)

followed by

H = A + B and J = C + D

(37)

Mathematica seems not to mind which way we do this. The actual entries may need to be more complicated than I have shown here.

Second, mathematical expressions can be entered into Mathematica using just the keyboard. Equally, these can be read back by a screen reader in separate character mode. We can then use Mathematica to integrate, differentiate, expand, solve, and so forth. 

Third, we can output code from Mathematica in TE( or in MathML, so that we only have to be clear about what we want in the first place and we can get a range of useful representations from one entry.
Fourth, Mathematica does seem to be reliable and standard in the way it approaches setting out mathematics.

Fifth, we can insert mathematics into a Mathematica Notebook and fold away parts of the text. This is extremely useful in explaining lengthy manipulations, because we can deliver the broad outline, in “chunks” of mathematics to give a reader a sense of where we are going. The reader can then go over the parts that are folded away in order to understand the details at the level they think appropriate to their learning. This facility is also useful in writing guides for problems. These can be of the form try A, then B then C etc. How to get from A to B, from B to C and so on, can be folded away. A reader can then try to do it themselves and unfold details of one small part if they find themselves stuck. One colleague of mine even set up answers to assignments in this way. The students lost marks if they unfolded help. This pay to peek method worked well until a bunch of about 30 students all unfolded one small part each. They all did very well, but a rethink of the system was required. 

It should be noted that a full version of a proper mathematical package such as Mathematica or Maple can be a little expensive. So is mathematicians’ time. The only other problem I have noticed is that the folding system requires fairly precise work with a mouse, so that a request to Wolfram Associates to produce a different version where this is easier might not be inappropriate.
5. Conclusion

While we think we see a way clear to provide readable mathematical expressions in Braille, with an automated standard system that can be used by teachers with little experience in markup languages, this will not help blind readers and students who do not read Braille. It seems there are many people who, while blind, do not read Braille.

The nature of complicated mathematical expressions makes rendering them by character by character screen readers unhelpful. We write the expressions to be read in a different way. A sighted reader will examine the whole catastrophe and then look at the parts, slowly integrating them with an overview until they (I trust) understand the whole thing. Complicated mathematics on a character by character basis, from start to finish, makes this impossible, for we cannot easily remember everything as we go along, especially if we have to stop to think about what some small part means, or how the small part is derived.
This suggests that we need to think about different ways to present complicated mathematics. I have suggested that it may be appropriate to break large equations into pieces, defining the parts separately. Thus with a description of the whole equation, perhaps of the form, for equations (20-22)
“Density times time derivative of velocity plus Euler term equals minus (gradient of pressure) plus viscosity times Laplacian of  velocity”, we can break the monster into 

A equals density plus time derivative of velocity

B equals Euler term: density times ((velocity dot grad))velocity
C equals minus gradient of pressure

D equals viscosity times Laplacian of velocity

and so

A + B = C + D

(38)

The tools that are available to render mathematics in this style require that we think again about how we may describe mathematical equations. If we use a tree structure of definitions in a mathematical manipulation package, we can do all these things fairly clearly. The result should be easily read by a sighted reader, and if they prefer, the result may be put together into standard form by the software package.  The result may also be read by a blind reader. If we construct the code for the equation in a mathematically sensible way, we may be able to derive a range of representations from one initial entry of code for the equation. This only requires that we have thought about all modes of representation before we start coding.
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